Maths is a vital part of everyday life. It is an important creative discipline that helps us to understand and change the world. It teaches our children how to make sense of the world around them and develops their ability to understand and solve problems, Numbers are one way that we communicate between ourselves about our world and therefore: we need to understand what numbers represent and how they are used in order to better understand our world.

At Tame Valley Academy, we intend to give every child the capability, confidence and resilience to reach their full potential by ensuring that they have the tools to calculate fluently, reason logically, problem solve and think in abstract ways. For this reason, we follow the White Rose Maths structure and make additions and support this using NECTM and NRICH. Our maths lessons are taught daily and follow a mastery approach which is split into arithmetic, fluency and knowledge (AFK) where children acquire the deepened understanding of skills and concepts through concrete, pictorial and abstract concepts. Children then apply these maths skill to Reasoning and Problem Solving (RPS) part of the lesson where children reasoning in the real world. We believe this is all important for our children's mathematical development.

Our whole curriculum is shaped by our school vision which aims to enable all children, regardless of background, ability or SEND, to flourish and become the very best version of themselves they can possibly be. We teach the National Curriculum, supported by a clear skills and knowledge progression. This ensures that skills and knowledge are built on year by year and sequenced appropriately to maximise learning for all children.

Our aim is to support children to:

- become capable, confident and independent mathematicians.
- develop a deep conceptual understanding of Maths and its interrelated content so that children can apply their learning in different situations.
- articulate, discuss and explain their thinking using appropriate mathematical vocabulary.
- see mistakes as a learning opportunity.
- develop into resilient and inquisitive learners.

EYFS (Nursery \& Reception)

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting concrete objects. They combine objects in practical ways and count all. They understand addition as counting on and will count on in ones and twos using objects, cubes, bead string and number line. They use concrete and pictorial representation to record their calculations. They begin to use + and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects. They understand subtraction as counting out. They begin to count back in ones and twos using objects, cubes, bead string and number line. They use concrete and pictorial representation to record their calculations. They begin to use - and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations.	Children use concrete objects to make and count equal groups of objects. They will count on in twos using a bead string and number line. They understand doubling as repeated addition. $2+2=4$ They use concrete and pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children use concrete objects to count and share equally into 2 groups. 6 cakes shared between 2 people each person gets 3 cakes. $6 \div 2=3$ They count a set of objects and halve them by making two equal groups. They understand sharing and halving as dividing by 2 . They will begin to use objects to make groups of 2 from a given amount. They use concrete and pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and

| | Higher attaining children may be able to
 represent their calculations using symbols and
 numbers within a written calculation. | numbers within a written calculation. |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{ADDITION - KS1 (Years 1\&2)}

\hline \& Concrete \& Pictorial \& Abstract

\hline S
+
+
a
9
e

1 \& Use part whole model, cubes and bead strings to add two numbers together as a group or in a bar. \& Use jottings to represent numbers. \& | Children will record their calculation using a pictorial method along with a calculation using numbers and symbols. $11+4=15$ |
| :--- |
| They may use their fingers to support their mental methods |

\hline S
+
+
a
9
e

2 \& \begin{tabular}{l}
Grouping objects to add

Children will use dienes cubes to add larger numbers where regrouping is not required.

They will also use a bead string to add larger numbers by counting in tens and ones

 \&

Number line

Start at the larger number on the number line and count on in ones or in one jump to find the answer. Children will show their representations from the concrete method using pictures.

Numbers will get progressively larger throughout the keystage. Children will be able to add tens and ones using an empty number

 \&

Children will record their calculation using a pictorial method

$$
27+10=37
$$

along with a calculation using numbers and symbols.

$$
27+20=47
$$

Children will begin to add multiples

$$
27+\square=57
$$ of tens.

\end{tabular}

\hline
\end{tabular}

ADDITION - Lower KS2 (Years 3 \& 4)

	Concrete	Pictorial	Abstract
S	Use dienes cubes to consolidate learning from KS1. Ensure children are confident at using these to join, regroup and count. a g This will support them moving onto the next stage of column addition.	Number line Consolidate their learning from KS1 by using an empty number line to count larger numbers.	Partitioning Children will consolidate using the partitioning method. The layout will begin to form a written method to support further progress onto the column method. Hundreds,Tens and ones will be added to form partial sums and then these partial sums will be added together to find the total.

SUBTRACTION - KS1 (Years 1\&2)

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{SUBTRACTION - KS1 (Years 1\&2)}

\hline \& Concrete \& Pictorial \& Abstract

\hline S
t
a
g
e

1 \& \begin{tabular}{l}
Taking objects away

Use part whole model, cubes and bead strings to subtract two numbers together by moving objects away from the group.

 \& Use jottings to represent numbers. Children will learn to cross out drawn objects to show what has been taken away. \&

Children will record their calculation using a pictorial method along with a calculation using numbers and symbols.

$$
11-4=7
$$

They may use their fingers to support their mental methods
\end{tabular}

\hline S
t
a
g
e

2 \& \begin{tabular}{l}
Children will use dienes cubes to subtract larger numbers where exchanging is not required. Children will lay out the first number using the dienes cubes and then move the second number away to show the subtraction.

They will also use a bead string to add larger numbers by counting in tens and ones.

 \&

Number line

Children will begin to draw their own number lines. Start at the larger number on the number line and count back in ones or in one jump to find the answer.

Numbers will get progressively larger throughout the keystage. Children will be able to subtract tens and ones using an empty number line.

Children will show their representations from the concrete method using pictures.

$43-21=22$

 \&

Children will record their calculation using a pictorial method along with a calculation using numbers and symbols.

$$
25-12=13
$$

Children will begin to subtract multiples of tens.

$$
25-10
$$

$$
25-10=15
$$

\end{tabular}

\hline S
t
a
g

e \& Children will begin to use place value counters and dienes cubes to show how to exchange between units of number. They will be \& Empty number line - Use an empty number line to count back in tens and then ones. \& | Partitioning method |
| :--- |
| Children will begin to use the partitioning method. Tens and ones will be subtracted to form partial sums and then these partial sums will be added together to find the total. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MULTIPLICATION - KS1 (Years 1\&2)}

\hline \& Concrete \& Pictorial \& Abstract

\hline S
+
a
g
e

1 \& \begin{tabular}{l}
Repeated addition - Groups of multiple objects

Children will count groups of the same number of objects and add them together. The children learn about grouping in practical contexts and through pictorial representations.

 \&

Children draw representations to

Double 4 is 8 show counting in multiples and groups.

\square

\square
\square
\end{tabular} \& Children show multiplication as repeated addition. Children may provide pictorial representations to support.

$$
3 \times 9
$$

$$
3+3+3=9
$$

\hline S
+
a
g
e

2 \& \begin{tabular}{l}
Arrays

Children will be able to represent a multiplication calculation using an array and write the multiplication symbol within a number sentence. Children will also understand that multiplication can be carried out in any order (commutative).

 \& Children draw representations to show arrays. \&

Children use arrays to show how to solve multiplication calculations. Children are able to show that multiplication can be done in any order (commutative).

$$
3 \times 5=15
$$

$$
5 \times 3=15
$$

Introduce \times sign and record as number sentence

$$
7 \times 10=70
$$

$$
4 \times 5=20
$$

Use an array to write multiplication sentences and reinforce repeated addition.

$$
\begin{aligned}
& 5+5+5=15 \\
& 3+3+3+3+3=15 \\
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned}
$$

\end{tabular}

\hline S \& Number line \& Children will be able to use an empty number line to show multiplication as repeated addition. The use of beadsting \& Children show multiplication as repeated addition.

\hline
\end{tabular}

	understanding.		Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$
	When multiplying decimals by 10,100,1000 initial concrete resources will be used to support understanding to show how exchanging can take place.	This pictorial grid method will support children's understanding of multiplying by $10,100,1000$.	Long multiplication Children may wish to use 2 separate $\times 13$ $\begin{array}{ll}\text { calculations to support their } & +69 \quad(3 \times 23)\end{array}$ of place value when multiplying by $\frac{230}{299}(10 \times 23)$multiples of 10 . Extend to 3 or 4- $\underline{299}$ digit numbers multiplied by a 2-digit number.
	Please note: Concrete apparatus and pictorial representations should still be used to support children who may be struggling with abstract concepts. Concrete apparatus should be readily available for lower achieving children and these with SEND.	Please note: Concrete apparatus and pictorial representations should still be used to support children who may be struggling with abstract concepts. Concrete apparatus should be readily available for lower achieving children and these with SEND.	Use column multiplication, ensuring understanding of place value at each stage.

DIVISION - KS1 (Years 1\&2)

\begin{tabular}{|c|c|c|c|}
\hline \& Concrete \& Pictorial \& Abstract

\hline S
+
a
g
e

1 \& \begin{tabular}{l}
Sharing and Grouping

Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.

Share 10 into 2 equal groups

How many 2 s in 10 ?

 \&

Use pictures to share objects. Use circles rather than dots to aid counting.

Share 10 into 2 equal groups

00000

00000

How many $2 s$ in 10 ?

88888

Develop division as repeated subtraction on a number line.

number line.

12 shared between 3 is 4

 \&

Children will be able to represent a division calculation using a pictorial method and write the division within a number sentence.

$$
10 \div 2=5
$$

Share 10 into 2 equal groups

\end{tabular}

\hline \[
$$
\begin{aligned}
& s \\
& t \\
& a \\
& g \\
& e \\
& \\
& 2
\end{aligned}
$$

\] \& | Arrays |
| :--- |
| Link division to multiplication by creating an array and thinking about the number sentences that can be created. |
| Eg: $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ | \& Draw arrays to show how pictures are divided. \& Children will be able to represent a division calculation using an array and write the division within a number sentence

\hline 5 \& Repeated addition and subtraction \& Children will understand the operation of division as grouping \& Children will be able to represent a division calculation using a

\hline
\end{tabular}

DIVISION - Lower KS2 (Years 3 \& 4)

\begin{tabular}{|c|c|c|c|}
\hline \& Concrete \& Pictorial \& Abstract

\hline S
+
a
g
e

1 \& \begin{tabular}{l}
Division with no remainders through sharing.

Use concrete materials to share into groups.

 \&

Consolidate learning from KS1 using diagrams of sharing and repeated subtraction and addition on a number line to make jumps
Example without remainder.

$$
40 \div 5
$$

Ask "How many 5 s in 40?"

Concrete methods could be represented pictorially within books to show understanding.

 \&

How many groups of 6 in 24?

$$
24 \div 6=4
$$

Abstract methods may be supported with pictorial methods within the children's books.
\end{tabular}

\hline
\end{tabular}

Division with remainder through sharing
 $14 \div 3=$

Divide objects between groups and see how much is left over.

E

Division no remainders - introduction to bus stop method Use place value equipment on a
place
value grid alongside short $4 \longdiv { 4 8 }$ division.

The model uses grouping.

Students can continue to use drawn diagrams with circles to help them divide numbers into equal groups. Remainders will be seen by not fitting into a whole group

Draw dots and group them to divide an amount and clearly show a remainder.
Example without remainder $0 \div 5$ Example with remainder
5+5+5+5+5+5+5+5}=8\mathrm{ five
5+5+5+5+5+5+5+5}=8\mathrm{ five
0}
0} $38 \div 6$
+6+6+6+2 06121824303638

Children will begin to move onto division with remainders. A number sentence will support any abstract written calculation by using pictorial method to support.

```
    29\div8=3 REMAINDER 5
    \uparrow \uparrow \uparrow }
dividend divisor quotient
remainder
```


Short division

Children will begin to use the formal written method of division without remainders. This will only come after a clear concept is understood using manipulatives.

Dividing by $2,3,4$, and 5

DIVISION - Upper KS2 (Years 5 \& 6)

	Concrete	Pictorial	Abstract
	Dividing whole numbers by 10,100 and 1,000 Use place value equipment to support unitising for division. $4,000 \div 1,000$ 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$ Concrete and pictorial representations may still be required to support the formal method of division (Bus Stop) - Go back to LKS2 to consolidate learning.	Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 . $3,200 \div 100=?$ 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right. Continue to use blank number lines as appropriate, using multiples of the divisor. $65 \div 5=13$	Chunking $73 \div 5$ 5 $\begin{array}{ll} \begin{array}{\|c} 73 \\ -\frac{50}{23} \end{array} & (\underline{10} \times 5) \\ \frac{-20}{3} & (\underline{4} \times 5) \end{array} \quad 10+4=14$ How many 5 s have been subtracted? 14 sets of 5 , with 3 left over. Answer: $73 \div 5=14 \mathrm{r} 3$ Chunking is repeated subtraction of the divisor and multiples of the divisor. Bus Stop Method for division Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder.

Dividing decimals by 10,100 and 1,000
Use place value counters to represent dividing by $10,100,1000$.
Represent division using exchange on a place value grid.

Represent division to show the relationship with multiplication Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid.

$0.85 \div 10=0.085$

$8.5 \div 100=0.085$

Finally move into decimal places to divide the

 total accurately using a formal method for division (Bus stop)

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} { }^{10} \\ 2 \longdiv { 2 } \\ 2 \longdiv { 5 8 } \end{gathered}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t 0 \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

